Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(2): 1175-1186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37695472

RESUMO

Post-stroke acute inhibition of aquaporin 4 (AQP4) is known to exacerbate inflammation and apoptosis, yet the underlying mechanisms are not fully understood. The objective of this study was to investigate the specific mechanism of inflammation and apoptosis following cerebral ischemia-reperfusion (I/R) injury using the AQP4-specific inhibitor, N-(1,3,4-thiadiazol-2-yl) pyridine-3-carboxamide dihydrochloride (TGN-020). Ischemic stroke was induced in mice using the middle cerebral artery occlusion (MCAO) model. The C57/BL6 mice were randomly divided into three groups as follows: sham operation, I/R 48 h, and TGN-020 + I/R 48 h treatment. All mice were subjected to a series of procedures. These procedures encompassed 2,3,5-triphenyltetrazolium chloride (TTC) staining, neurological scoring, fluorescence tracing, western blotting, immunofluorescence staining, and RNA sequencing (RNA-seq). The glymphatic function in the cortex surrounding cerebral infarction was determined using tracer, glial fibrillary acid protein (GFAP), AQP4 co-staining, and beta-amyloid precursor protein (APP) staining; differential genes were detected using RNA-seq. The influence of TGN-020 on the extracellular signal-regulated kinase 1/2 (ERK) 1/2 pathway was confirmed using the ERK1/2 pathway agonists Ro 67-7467. Additionally, we examined the expression of inflammation associated with microglia and astrocytes after TGN-020 and Ro 67-7467 treatment. Compared with I/R group, TGN-020 alleviated glymphatic dysfunction by inhibiting astrocyte proliferation and reducing tracer accumulation in the peri-infarct area. RNA-seq showed that the differentially expressed genes were mainly involved in the activation of astrocytes and microglia and in the ERK1/2 pathway. Western blot and immunofluorescence further verified the expression of associated inflammation. The inflammation and cell apoptosis induced by I/R are mitigated by TGN-020. This mitigation occurs through the improvement of glymphatic function and the inhibition of the ERK1/2 pathway.


Assuntos
Isquemia Encefálica , Niacinamida/análogos & derivados , Traumatismo por Reperfusão , Tiadiazóis , Camundongos , Animais , Sistema de Sinalização das MAP Quinases , Transdução de Sinais/fisiologia , Apoptose , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
2.
Neuroscience ; 521: 20-30, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121383

RESUMO

BACKGROUND: Delayed neuronal damage can be caused or aggravated after cerebral ischemia-reperfusion (I/R) injury. Recent studies have shown that glymphatic system dysfunction after cerebral ischemia-reperfusion injury is involved in ischemic brain edema and neuroinflammation, thereby regulating cerebral ischemia-reperfusion injury. The aim of this study is to investigate the changes of glymphatic system after cerebral ischemia-reperfusion injury and whether limb remote ischemic postconditioning (LRIP) can improve the function of glymphatic system to protect the brain. METHODS: To establish a focal brain I/R injury mouse model, this study utilized the middle cerebral artery occlusion/reperfusion (MCAO/R) method. The present study classified eight-week-old C57BL/6 male mice into three groups. The changes in glymphatic function in different periods of ischemia and reperfusion were analyzed through immunofluorescence, transmission electron microscopy (TEM), and Western-Blot (WB) assays. The contents of the evaluation included cerebrospinal fluid flow, swelling degree of brain tissue, aquaporin-4 (AQP4) expression and polarization, and amyloid-ß (Aß) excretion. RESULTS: In the early stages of cerebral ischemia, cerebrospinal fluid (CSF) flow is disturbed, accompanied by a decrease in AQP4 polarization. The polarity of AQP4 decreased from 12 h to 72 h of reperfusion, the Aß deposition. LRIP can increase the expression of ß-DG and AQP4 polarization, reduce the deposition of Aß, improve the function of the glymphatic system, and reduce the expression of AQP4 to play A protective role in brain. CONCLUSION: Glymphatic system impaired after cerebral ischemia-reperfusion injury in mice. LRIP may play a neuroprotective role by improving glymphatic function after I/R.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Pós-Condicionamento Isquêmico , Traumatismo por Reperfusão , Ratos , Masculino , Camundongos , Animais , Ratos Sprague-Dawley , Pós-Condicionamento Isquêmico/métodos , Camundongos Endogâmicos C57BL , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/metabolismo , Aquaporina 4/metabolismo
3.
Adv Mater ; 35(8): e2206741, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36303536

RESUMO

Scintillator-based X-ray imaging has attracted great attention from industrial quality inspection and security to medical diagnostics. Herein, a series of lanthanide(III)-Cu4 I4 heterometallic organic frameworks (Ln-Cu4 I4 MOFs)-based X-ray scintillators are developed by rationally assembling X-ray absorption centers ([Cu4 I4 ] clusters) and luminescent chromophores (Ln(III) ions) in a specific manner. Under X-ray irradiation, the heavy inorganic units ([Cu4 I4 ] clusters) absorb the X-ray energy to populate triplet excitons via halide-to-ligand charge transfer (XLCT) combined with the metal-to-ligand charge-transfer (MLCT) state (defined as the X/MLCT state), and then the 3 X/MLCT excited state sensitizes Tb3+ for intense X-ray-excited luminescence via excitation energy transfer. The obtained Tb-Cu4 I4 MOF scintillators exhibit high resistance to humidity and radiation, excellent linear response to X-ray dose rate, and high X-ray relative light yield of 29 379 ± 3000 photons MeV-1 . The relative light yield of Tb-Cu4 I4 MOFs is ≈3 times higher than that of the control Tb(III) complex. X-ray imaging tests show that the Tb-Cu4 I4 MOFs-based flexible scintillator film exhibits a high spatial resolution of 12.6 lp mm-1 . These findings not only provide a promising design strategy to develop lanthanide-MOF-based scintillators with excellent scintillation performance, but also exhibit high-resolution X-ray imaging for biological specimens and electronic chips.

4.
J Colloid Interface Sci ; 608(Pt 2): 1543-1552, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742072

RESUMO

Hypoxia and high-density extracellular matrix within the tumor microenvironment (TME) strengthens tumor resistance to the oxygen-dependent cancer therapy. Herein, an on-demand oxygen released nanoplatform (MONs/IR780/PFC-O2@BSA, BMIPO) that was triggered by near-infrared (NIR) light combined with TME has been designed for achieving synergistic photothermal/photodynamic therapy with deep intratumoral penetration and oxygen self-sufficiency. Notably, the zeta potential and transmission electron microscope (TEM) results indicated that such "smart" BMIPO nanoplatform possessed good colloidal stability and on-demand TME-specific degradability. This characteristic of the BMIPO nanoplatform allows it to simultaneously achieve high tumor accumulation and deep intratumoral penetration. The results of the O2 loading and release measurements showed that the as- prepared BMIPO possessed excellent O2 reversibly bind/release performance. Furthermore, the photothermal effect of NIR dye (IR780) accelerated the dissociation of TME-responsive BMIPO, as a result, it achieved an on-demand, continuous and complete O2 release to relieve tumor hypoxia during phototherapy. In vitro and in vivo results demonstrated that the as-prepared all-in-one nanoplatform have successfully realized NIR-triggered on-demand O2 release, nanocarrier-mediated glutathione (GSH) reducing, hyperthermia-promoted deep intratumoral penetration and dual-model imaging-guided precise cancer therapy. This work would provide inspiration for the design of nanoplatforms with on-demand release and deep intratumoral penetration for achieving high-efficiency synergistic photothermal/photodynamic therapy in hypoxic tumors.


Assuntos
Hipertermia Induzida , Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Oxigênio , Fototerapia
5.
Front Microbiol ; 11: 276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210930

RESUMO

The knowledge on the host specificity of a pathogen underlying an interaction is becoming an urgent necessity for global warming. In this study, the gene expression profiles and the roles of effectors in host specificity were integrally characterized with two formae speciales, multigermtubi and monogermtubi, of a hemibiotrophic pathogen Marssonina brunnea when they were infecting respective susceptible poplar hosts. With a functional genome comparison referring to a de novo transcriptome of M. brunnea and Pathogen-Host Interaction database functional annotations, the multigermtubi strain showed abundant and significant differentially expressed unigenes (DEGs) (more than 40%) in colonizing the initial invasion stage and in the necrotrophic stage. The monogermtubi strain induced less than 10% of DEGs in the initial invasion stage but which abruptly increased to more than 80% DEGs in the necrotrophic stage. Both strains induced the least DEGs in the biotrophic stage compared to the initial invasion and necrotrophic stages. The orthologs of the effector genes Ecp6, PemG1, XEG1, ACE1, and Mg3LysM were exclusively induced by one of the two formae speciales depending on the infection stages. Some unigenes homologous to carbohydrate lytic enzyme genes, especially pectate lyases, were notably induced with multigermtubi forma specialis infection but not expressed in the monogermtubi forma specialis at an earlier infection stage. The extraordinary differences in the functional genome level between the two formae speciales of M. brunnea could be fundamental to exploring their host specificity determinant and evolution. This study also firstly provided the fungal transcriptome of the monogermtubi forma specialis for M. brunnea.

6.
J Gastroenterol Hepatol ; 32(9): 1631-1639, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28068755

RESUMO

BACKGROUND AND AIM: There still lacks a tool for precisely evaluating cirrhotic remodeling. Histologic distortion characterized in cirrhosis (i.e. cirrhotic patterns) has a validated pathophysiological meaning and potential relevance to clinical complications. We aimed to establish a new tool to quantify the cirrhotic patterns and test it for reflecting the cirrhotic remodeling. METHODS: We designed a computerized algorithm, named qCP, dedicated for the analysis of liver images acquired by second harmonic microscopy. We evaluated its measurement by using a cohort of 95 biopsies (Ishak staging F4/5/6 = 33/35/27) of chronic hepatitis B and a carbon tetrachloride-intoxicated rat model for simulating the bidirectional cirrhotic change. RESULTS: QCP can characterize 14 histological cirrhosis parameters involving the nodules, septa, sinusoid, and vessels. For chronic hepatitis B biopsies, the mean overall intra-observer and inter-observer agreement was 0.94 ± 0.08 and 0.93 ± 0.09, respectively. The robustness in resisting sample adequacy-related scoring error was demonstrated. The proportionate areas of total (collagen proportionate area), septal (septal collagen proportionate area [SPA]), sinusoidal, and vessel collagen, nodule area, and nodule density (ND) were associated with Ishak staging (P < 0.01 for all). But only ND and SPA were independently associated (P ≤ 0.001 for both). A histological cirrhosis parameters-composed qCP-index demonstrated an excellent accuracy in quantitatively diagnosing evolving cirrhosis (areas under receiver operating characteristic curves 0.95-0.92; sensitivity 0.93-0.82; specificity 0.94-0.85). In the rat model, changes in collagen proportionate area, SPA, and ND had strong correlations with both cirrhosis progression and regression and faithfully characterized the histological evolution. CONCLUSIONS: QCP preliminarily demonstrates potential for quantitating cirrhotic remodeling with high resolution and accuracy. Further validation with in-study cohorts and multiple-etiologies is warranted.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Algoritmos , Animais , Tetracloreto de Carbono , Modelos Animais de Doenças , Progressão da Doença , Masculino , Microscopia , Ratos Sprague-Dawley , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...